Skip to main content

Largest Element In Array

Problem Description​

Given an array arr, the task is to find the largest element in it.

Examples​

Example 1:

Input: arr= [1, 8, 7, 56, 90]
Output: 90
Explanation: The largest element of given array is 90.

Example 2:

Input: arr = [5, 5, 5, 5]
Output: 5
Explanation: The largest element of given array is 5.

Your Task​

You don't need to read input anything. Your task is to complete the function largest() which takes the array arr and an size of array as n as input parameters and returns the largest number.

Expected Time Complexity: O(n)

Expected Auxiliary Space: O(1)

Constraints​

  • 1 <= arr.size()<= 10^5

Problem Explanation​

The task is to traverse the whole array and find the largest element of that array.

Code Implementation​

C++ Solution​

class Solution
{
public:
int largest(vector<int> &arr, int n)
{
int maxi = INT_MIN;
for(int i=0; i<n; i++){
maxi = max(arr[i], maxi);
}
return maxi;
}
};
public class Solution {
public int largest(int[] arr) {
int maxi = Integer.MIN_VALUE;
for (int i = 0; i < arr.length; i++) {
maxi = Math.max(arr[i], maxi);
}
return maxi;
}
}

class Solution:
def largest(self, arr):
maxi = float('-inf')
for i in range(len(arr)):
maxi = max(arr[i], maxi)
return maxi

class Solution {
largest(arr) {
let maxi = -Infinity;
for (let i = 0; i < arr.length; i++) {
maxi = Math.max(arr[i], maxi);
}
return maxi;
}
}

class Solution {
largest(arr: number[]) {
let maxi = -Infinity;
for (let i = 0; i < arr.length; i++) {
maxi = Math.max(arr[i], maxi);
}
return maxi;
}
}

``

## Time Complexity

* The time complexity is $$O(n)$$ where n is the length of the input array. This is because we are iterating through the array once to find the maximum element.

## Space Complexity

* The auxiliary space complexity is $O(1)$ which means the space required does not change with the size of the input array. This is because we are only using a fixed amount of space to store the maximum element and the index.